Below is a summary of the scientific literature on each ingredient in the Lemello formula.
Lemon balm (Melissa officinalis) is a perennial herb with a zesty, lemon aroma, which is said to have long been used to support calmness, as well as sleep (Taiwo et al., 2012, Scholey et al., 2014).* Some studies suggest that rosmarinic acid in lemon balm may support the inhibition GABA-transaminase (GABA-T), an enzyme thought to degrade GABA (Scholey et al., 2014, Ramanauskiene et al., 2016).* GABA is said to be the main inhibitory neurotransmitter which is thought to decrease excitability in the nervous system (Nuss, 2015).* In other words, it is thought to be the neurotransmitter responsible for putting the brakes on the nervous system (Nuss, 2015).*
Oleamide is a natural fatty acid which is said to be produced naturally in our brains from oleic acid (found in olive oil).* It is also said to be found within the fruits of Ziziphus jujuba, known as jujube or Chinese date (Chen et al., 2017).* Jujubae fructus is said to have been consumed in China for over 3,000 years (Chen et al., 2017).* Oleamide's natural function is thought to be associated with bringing about sleep (Boger, Henriksen and Cravatt, 1998).* Studies have suggested that it accumulates in the central nervous system prior to sleeping (Basile, Hanus and Mendelson, 1999).* It has reportedly been found to accumulate in the brain and spinal fluid by up to 6-fold after only a few hours of sleep deprivation (Basile, Hanus and Mendelson, 1999).*
It has been suggested that oleamide may be associated with supporting GABAergic signalling, which could potentially account for its perceived soothing properties (Coyne et al., 2002).* It may also support serotonin signalling (Huidobro-Toro and Harris, 1996).* One preliminary study found that oleamide significantly promoted subjective calmness scores in the test group (Wei et al., 2007).* Another study indicated that it promoted significant relaxation without causing physical dependence (Fedorova et al., 2001).* Oleamide may confer a range of other benefits but the significance of its effects will only be fully understood once further research becomes available.
Magnolia bark (magnolia officinalis) has been used to promote sleep and relaxation for thousands of years in Asia (Poivre and Duez, 2017).* Magnolia bark extract contains several bioactive compounds such as the bi-phenolic isomers honokiol and magnolol (Amorati et al., 2015). Research suggests these compounds are antioxidants (Chen et al., 2001, Shen et al., 2010, Amorati et al., 2015).* While Magnolia bark has been ingested for thousands of years, researchers have only relatively recently begun to explore the effects of Magnolol and Honokiol on serotonin receptors and the GABAergic system (Lee et al., 2011, Woodbury et al., 2013, Poivre and Duez, 2017).* It has been suggested that magnolia may support relaxation by helping to maintain GABAergic neurotransmission (Wang and Nielsen, 2001, Han et al., 2011, Alexeev et al., 2012).* The significance of Magnolia's benefits will only become fully apparent once further research is conducted.
Valerian Root (Valeriana Officinalis) is said to have been used since the era of ancient Greece and Rome to promote tranquility and aid sleep (Hendriks et al., 1981).* Valerian is said to contain valerenic acid, isovaleric acid and other potential antioxidants such as hesperidin and linarin. Research suggests that valerenic acid may support GABAergic neurotransmission, which may account for Valerian's reputed effects (Houghton, 1999, Benke et al., 2009, Murphy et al., 2010).* Becker et al. (2014) reported that it may allosterically modulate GABA-A receptors.* Several studies suggests that taking valerian root may reduce the amount of time it takes to fall asleep, as well as improve sleep quality and quantity (Leathwood et al., 1982, Balderer and Borbély, 1985, Lindahl and Lindwall, 1989, Tokunaga et al., 2007, Taavoni, Ekbatani and Haghani, 2013, Taavoni et al., 2013).*
Erythrina Mulungu, also known as Erythrina Verna, is a medium-sized tree, native to the Amazon rainforest regions of Brazil and Peru. If you have ever ventured into the depths of Amazonia, you might have encountered its coral red flowers, which earned it the alternative name “coral tree.”
The tree bark has long been utilized by the Shamans of Indigenous Amazonian tribes, for a number of uses, including sleep support and promoting calmness (Garín-Aguilar et al., 2000, Vasconcelos et al., 2003, Ribeiro et al., 2006, Vasconcelos et al., 2007).*
There have not been many human studies done on mulungu's constituents, which are said to comprise of alkaloids such as cristamidine, erysodine and hydroxyerythravine, as well as flavonoids and triterpines (Patocka, 2009, Oliveira et al., 2012, Setti-Perdigão et al., 2013, Gelfuso et al., 2016).*
In a study of people attending the dentist to get their molars extracted, a significantly high preference for mulungu was observed among the vast majority of participants (Silveira-Souto et al., 2014).* The study also found that people of a nervous disposition tended to prefer mulungu the most (Silveira-Souto et al., 2014).* This was a very small study though. It should not be interpreted as conclusive evidence of any health benefit.
Mulungu is unusual for an allegedly relaxing extract, in that some studies suggest it does not appear to have a prevalent action on GABA or glutamate neurotransmission (Faggion et al., 2011, Rosa et al., 2012).* Vasconcelos et al. (2004) claimed to have found that the active extracts didn’t cause any motor coordination impairment in mice either.*
Recent studies have suggested that Erythrina alkaloids such as erysodine may help to support the modulation of nicotinic receptor channels, but the evidence is limited (Setti-Perdigão et al., 2013,Smith, Tapper and Gardner, 2018, Gelfuso et al., 2020).* It has been suggested that nicotinic acetylcholine receptors may play a role in mood health, but further research is needed (Picciotto et al., 2014).* Further research is needed before any conclusions can be drawn about any of the aforementioned potential benefits of mulungu, as well as any of its other purported potential benefits which have not been discussed here.*
Ai, J., Wang, X. & Nielsen, M. 2001. Ph, 63, 34-41.
Alexeev, M., Grosenbaugh, D. K., Mott, D. D. & Fisher, J. L. 2012. Neuro, 62, 2507-14.
synaptic GABA(A) receptors. Neuro, 62, 2507-14.
Amorati, R., Zotova, J., Baschieri, A. & Valgimigli, L. 2015. J Org Chem, 80, 10651-9.
Balderer, G. & Borbely, A. A. 1985. Ps (Berl), 87, 406-9.
Basile, A. S., Hanus, L. & Mendelson, W. B. 1999. Neuroreport, 10, 947-51.
Becker, A., Felgentreff, F., Schröder, H., Meier, B., & Brattström, A. 2014. BMC CAAM, 14, 267.
Benke, D., Barberis, A., Kopp, S., Altmann, K. H., Schubiger, M., Vogt, K. E., Rudolph, U. & Mohler, H. 2009. Neuro, 56, 174-81.
Boger, D. L., Henriksen, S. J. & Cravatt, B. F. 1998. Curr PD, 4, 303-14.
Chen, J., Liu, X., Li, Z., Qi, A., Yao, P., Zhou, Z., Dong, T. and Tsim, K. 2017. EBCAM, 3019568.
Chen, Y. L., Lin, K. F., Shiao, M. S., Chen, Y. T., Hong, C. Y. & Lin, S. J. 2001. Basic Res Cardio, 96, 353-63.
Coyne, L., Lees, G., Nicholson, R. A., Zheng, J. & Neufield, K. D. 2002. Br JP, 135, 1977-87.
Faggion, S. A., Cunha, A. O., Fachim, H. A., Gavin, A. S., dos Santos, W. F., Pereira, A. M., & Beleboni, R. O. 2011. E&B, 20(3), 441–446.
Fedorova, I., Hashimoto, A., Fecik, R. A., Hedrick, M. P., Hanus, L. O., Boger, D. L., Rice, K. C. & Basile, A. S. 2001. J PET, 299, 332-42.
Flausino, Jr., O., Pereira, A., Bolzani, V. and Nunes-de-Souza, R. 2007. Bio & P Bull, 30(2), 375-378.
Gelfuso, E., Reis, S., Pereira, A., Aguiar, D. and Beleboni, R. 2020. Life Sciences, 240.
Han, H., Jung, J. K., Han, S. B., Nam, S. Y., Oh, K. W. & Hong, J. T. 2011. J Food, 14, 724-31.
Hendriks, H., Bos, R., Allersma, D. P., Malingré, T. M., & Koster, A. S. 1981. Planta, 42(1), 62–68.
Houghton, P. J. 1999. J PP, 51, 505-12.
Huidobro-Toro, J. P. & Harris, R. A. 1996. Proc Natl Acad Sci USA, 93, 8078-82.
Leathwood, P. D., Chauffard, F., Heck, E. & Munoz-Box, R. 1982. P Biochem Behav, 17, 65-71.
Lee, Y. J., Lee, Y. M., Lee, C. K., Jung, J. K., Han, S. B. & Hong, J. T. 2011. PT, 130, 157-76.
Lindahl, O. & Lindwall, L. 1989. P Biochem Behav, 32, 1065-6.
Mansbach, R., Chambers, L. and Rovetti, C. 2000. Ps, 148(3), 234-242.
Murphy, K., Kubin, Z. J., Shepherd, J. N. & Ettinger, R. H. 2010. Phyto, 17, 674-8.
Nuss P. 2015. ND & T, 11, 165–175.
Oliveira, M., Aquino, A., Silva, D., Aquino, P., Santos, M., Porfírio, A., Sant'Ana, A., Santos, B., Alexandre-Moreira, M. and Araújo-Júnior, J. 2012. Brazilian JoP, 22(1), 157-161.
Patocka, J., 2009. Psy, 13, 89-91.
Picciotto, M. R., Lewis, A. S., van Schalkwyk, G. I., & Mineur, Y. S. 2015. Neuro, 96(Pt B), 235–243.
Poivre, M. & Duez, P. 2017. J Zhejiang Univ Sci B, 18, 194-214.
Ramanauskiene, K., Raudonis, R., & Majiene, D. 2016. OM & CL, 2016, 1564257.
Ribeiro, M. D., Onusic, G. M., Poltronieri, S. C., & Viana, M. B. 2006. Brazilian journal of biol research, 39(2), 263–270.
Santos Rosa, D., Faggion, S. A., Gavin, A. S., Anderson de Souza, M., Fachim, H. A., Ferreira dos Santos, W., Soares Pereira, A. M., Cunha, A. O., & Beleboni, R. O. 2012. E&B, 23(3), 205–212.
Scholey, A., Gibbs, A., Neale, C., Perry, N., Ossoukhova, A., Bilog, V., Kras, M., Scholz, C., Sass, M. & Buchwald-Werner, S. 2014. Nutrients, 6, 4805-21.
Setti-Perdigão, P., Serrano, M., Flausino, O., Bolzani, V., Guimarães, M. and Castro, N. 2013. PLoS ONE, 8(12), 82726.
Shen, J. L., Man, K. M., Huang, P. H., Chen, W. C., Chen, D. C., Cheng, Y. W., Liu, P. L., Chou, M. C. & Chen, Y. H. 2010. Molecules, 15, 6452-65.
Silveira-Souto, M., Sao-Mateus, C., de Almeida-Souza, L. and Groppo, F. 2014. 518-524.
Smith, C.B., Tapper, A.R. and Gardner, P.D. 2018. FASEB Journal, 32(782), 11.
Taavoni, S., Ekbatani, N., Kashaniyan, M. & Haghani, H. 2011. Men, 18, 951-5.
Taavoni, S., Nazem Ekbatani, N. & Haghani, H. 2013. CTCP, 19, 193-6.
Taferner, B., Schuehly, W., Huefner, A., Baburin, I., Wiesner, K., Ecker, G. F. & Hering, S. 2011. JMC, 54, 5349-61.
Taiwo, A. E., Leite, F. B., Lucena, G. M., Barros, M., Silveira, D., Silva, M. V. & Ferreira, V. M. 2012. Indian JP, 44, 189-92.
Tokunaga, S., Takeda, Y., Niimoto, T., Nishida, N., Kubo, T., Ohno, T., Matsuura, Y., Kawahara, Y., Shinomiya, K. & Kamei, C. 2007. Biol P Bull, 30, 363-6.
Vasconcelos, S. M., Lima, N. M., Sales, G. T., Cunha, G. M., Aguiar, L. M., Silveira, E. R., Rodrigues, A. C., Macedo, D. S., Fonteles, M. M., Sousa, F. C., & Viana, G. S. 2007. Jour of ethno, 110(2), 271–274.
Vasconcelos, S. M., Macedo, D. S., de Melo, C. T., Paiva Monteiro, A., Rodrigues, A. C., Silveira, E. R., Cunha, G. M., Sousa, F. C., & Viana, G. S. 2004. JOPP, 56(3), 389–393.
Vasconcelos, S. M., Rebouças Oliveira, G., Mohana de Carvalho, M., Rodrigues, A. C., Rocha Silveira, E., Maria França Fonteles, M., Florenço Sousa, F. C., & Barros Viana, G. S. 2003. Biolog & P bull, 26(7), 946–949.
Wei, X. Y., Yang, J. Y., Dong, Y. X. & Wu, C. F. 2007. Prog Neuro Biol Ps, 31, 1189-95.
Woodbury, A., Yu, S. P., Wei, L. & Garcia, P. 2013. Front Neurol, 4, 130.
© 2022 Zenstra Bio-Health.
Zenstra LLC.
Helping you become the best version of yourself. Discover Zenstra supplements.
*These statements have not been evaluated by the Food and Drug Administration. The products and information on this website are not intended to diagnose, treat, cure or prevent any disease. The information on this site is for educational purposes only and should not be considered medical advice. Please speak with an appropriate healthcare professional when evaluating any dietary supplement or regimen. Please read the full disclaimer on our Terms & Conditions page before taking any of the products listed on this site. By using this site, you agree to follow the Privacy Policy and Terms & Conditions. Void Where Prohibited by Law.